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Abstract

The complexity of biological systems and processes, spanning molecular to
macroscopic scales, necessitates the use of multiscale simulations to get a
comprehensive understanding. Quantum mechanics/molecular mechanics
(QM/MM) molecular dynamics (MD) simulations are crucial for capturing
processes beyond the reach of classical MD simulations. The advent of exas-
cale computing offers unprecedented opportunities for scientific exploration,
not least within life sciences, where simulations are essential to unravel intri-
cate molecular mechanisms underlying biological processes. However, lever-
aging the immense computational power of exascale computing requires in-
novative algorithms and software designs. In this context, we discuss the
current status and future prospects of multiscale biomolecular simulations
on exascale supercomputers with a focus on QM/MM MD. We highlight our
own efforts in developing a versatile and high-performance multiscale simu-
lation framework with the aim of efficient utilization of state-of-the-art su-
percomputers. We showcase its application in uncovering complex biological
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mechanisms and its potential for leveraging exascale computing.

Introduction

Biological processes extend across wide scales in space and time due to
the hierarchical organization of biological matter [1]. The characteristic di-
mensions span from the molecular scale of a few ångströms with ultrafast
electronic processes on the order of atto- and femtoseconds and rapid chem-
ical reactions that occur within pico- to microseconds, to the macroscopic
scale of cells and organs that are visible to the naked eye and where processes
extend to seconds and even days and years. The complexity in living organ-
isms largely stems from this hierarchical structure, where a local process may
trigger a cascade of events across multiple spatial and temporal scales. Thus,
multiscale approaches integrating different resolutions and methodologies are
essential for capturing the entire spectrum of biological events [2, 3].

The continuous development of multiscale methods in computational struc-
tural biology is driven by simultaneous advancements in algorithms, soft-
ware implementations, and hardware technology that push the boundaries of
molecular simulations in terms of accessible time scales and system sizes,
capturing biological systems from the atomistic to the cellular level. In
particular, quantum mechanics/molecular mechanics (QM/MM) molecular
dynamics (MD) simulations have become increasingly important in the last
decades for studying processes where a description of electronic degrees of
freedom is paramount and thus beyond the capabilities of classical MD based
on standard analytical force fields. Examples of such events encompass all
types of chemical reactions, including proton-coupled electron transfers [4, 5],
photochemistry [6], and the manifold of chemical transformations observed
in enzymatic reactions [7, 8], especially those involving transition metals [9].
A detailed characterization of these phenomena, including reactants, transi-
tion states, intermediates, and products, as well as the involved relative free
energies, reaction rates, and binding affinities in both electronic ground and
excited states, also has direct implications for drug design [10]. In QM/MM
models of biomolecular systems, a smaller part (the QM subsystem), such
as the active site of an enzyme or a chromophore embedded in a protein
or lipid bilayer, is described at the quantum mechanical level, while the re-
mainder (the MM subsystem) is modeled using molecular mechanics. This
multiscale strategy balances a detailed and accurate but computationally
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costly description of the essential part of a system with a coarser but compu-
tationally expedient approach for the much larger MM part. The dynamic
aspect of QM/MM MD is crucial to accurately capture the behavior and
function of complex proteins [11, 12]. However, QM/MM MD simulations
have a substantially higher computational cost than classical (i.e., MM) MD
simulations, severely limiting the accessible time scales. Typically, for a den-
sity functional theory (DFT)-based QM/MM MD simulation with around
100 atoms in the QM subsystem, accessible time scales are limited to a few
hundred picoseconds [8, 13].

The advent of exascale computing marks a pivotal moment for all simulation-
based scientific fields [14, 15]. This remarkable technological achievement
was accomplished by connecting thousands of computing nodes through high-
speed network interconnects. Each node combines traditional general-purpose
central processing units (CPUs) with powerful graphics processing units
(GPUs). However, exascale supercomputer architectures also introduce new
challenges since programming software applications for these heterogeneous
machines requires a judicious decomposition of the computational work to
exploit each component of the machines optimally [16]. Therefore, to fully
exploit the computational power of present and future heterogeneous HPC ar-
chitectures, a high degree of concurrent parallelism is needed, where different
parts of the supercomputer work on different subdomains of the computa-
tional model, each described within a different theoretical method. Together,
exascale computing and the development of novel computational methods
and software can enable longer and more accurate simulations on larger and
more complex systems. This opens up new opportunities for discovery and
innovation in the life and health sciences, potentially revolutionizing areas
such as drug design and bioengineering.

The heterogeneous CPU/GPU technology highlighted above is taken to
the next level with modular supercomputer architectures that integrate a
variety of hardware technologies into interconnected partitions [17, 18]. A
prime example of this is the LUMI supercomputer [19], along with the up-
coming exascale JUPITER supercomputer [20], both procured by the Eu-
ropean HPC Joint Undertaking (EuroHPC JU). Currently, LUMI consists
of two primary number-crunching partitions: a general-purpose CPU par-
tition and a high-performance GPU-accelerated partition. Additionally, it
features an interactive data analytics partition and an accelerated storage
partition. Looking ahead, the integration of prospective technologies like
quantum and neuromorphic computing into traditional HPC infrastructure
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is expected [17, 18]. Indeed, the procurement of a quantum computing parti-
tion for LUMI is already underway [21], and the Jülich Supercomputing Cen-
ter in Germany is already experimenting with this kind of integration [22].
Modular supercomputer architectures offer substantial benefits, particularly
in allowing calculations to run on the most suitable hardware for the specific
problem. Moreover, existing software packages that have yet to be optimized
for new hardware remain useful for solving important scientific problems.
Fully exploiting the capabilities of complex modular supercomputers for ex-
ceptionally challenging scientific problems, which require the full computing
power of the machine, necessitates a new computational paradigm. Here, we
highlight an approach recently introduced in the field of multiscale biomolec-
ular simulations.

Multiscale methods, especially the QM/MM approach, have proven indis-
pensable for exploring complex biological phenomena. Interestingly, QM/MM
is not only a robust technique in itself but also offers a route to overcome some
of the existing limitations in the development of software for atomistic sim-
ulations on modern hybrid computer architectures [14]. Beyond QM/MM,
multiscale methods can also be extended to incorporate multiple layers rang-
ing from coarse-grained (CG) to continuum models of matter where parts of
a system, e.g., membrane regions that are sufficiently distant from an em-
bedded protein of interest, are treated by techniques usually employed for
meso- and macroscopic systems [23–27].

To reach the full potential offered by exascale supercomputers, it is imper-
ative that multiscale interfaces scale efficiently, fully leveraging the extensive
network of CPUs and GPUs. That is one of the main objectives of MiMiC
(multiscale modeling in computational chemistry), a high-performance and
versatile framework for multiscale simulations [28]. The program-agnostic
MiMiC framework is designed to combine virtually any QM and MM (or
other) program without compromising the computational efficiency and scal-
ability of the simulation. Indeed, MiMiC, although still in its nascent stages,
has demonstrated its ability to efficiently scale QM/MM MD simulations
across thousands of CPU-based computing nodes [13, 29]. Here we will
showcase the MiMiC framework for biomolecular simulations, illustrating
its potentiality in leveraging state-of-the-art supercomputing resources and
its capability to address complex biochemical and biophysical problems.
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Current Status of Multiscale Biomolecular Simulation Software

Multiscale QM/MM capabilities are often implemented by either extend-
ing dedicated QM or MM programs with the functionalities of the other [30–
37] or by creating ad hoc interfaces between stand-alone QM and MM pro-
grams [38–41]. Additionally, some programs offer flexible interfaces that
facilitate easy coupling with other programs [42–44]. Beyond these, there
are integrative frameworks that do not contain inherent QM, MM, or simi-
lar functionalities, but instead depend entirely on other programs for these
capabilities [45–59].

The interface between QM and MM components can be classified as
tightly or loosely coupled, reflecting the degree of interdependence between
the components. Loose coupling is preferred for its flexibility and ease of
maintenance, enabling straightforward integration of independent programs.
This approach supports the quick incorporation of new functionalities and
advancements within individual programs without necessitating alterations
to other coupled components. Crucially, loose coupling permits independent
optimization of each program for peak performance. However, this flexibility
can come at the cost of computational efficiency due to slower inter-program
communication, particularly when compared to the tight coupling approach
that allows for direct in-memory data sharing.

There are three communication mechanisms for exchanging data between
programs, namely the file-, library-, and network-based approaches. Most
commonly utilized for general interfaces and integrative frameworks is the
file-based approach, which does not require modifications to the source code
of the interfaced programs, making it the simplest to implement. Here, the
main driver program generates input files for the interfaced programs, ex-
ecutes them, and subsequently reads their output files. However, it is no-
tably the least efficient communication mechanism, primarily due to slow disk
write/read operations and overhead associated with executing and terminat-
ing the interfaced programs. Both drawbacks are avoided in the library-based
approach, where the interfaced programs are converted into a library that
is linked to the main program, thus enabling efficient in-memory data ex-
change. The disadvantages are the rather intrusive modifications needed in
the source codes of the interfaced programs, and the risk of ending up with
a tight coupling focused on a few specific programs. Moreover, a critical as-
pect of multiscale implementations is parallel scalability and efficiency. The
optimal parallel algorithms for QM and MM components, or even among dif-
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ferent QM methods, may differ significantly and may not seamlessly integrate
within the more tightly coupled environments.

The network-based approach, on the other hand, offers a solution that po-
tentially circumvents the limitations inherent in both file- and library-based
methods. It achieves a balance between flexibility and communication effi-
ciency by enabling data exchange over a network. This facilitates seamless
communication between programs running on different processors (CPUs and
GPUs), across computing nodes, or even among supercomputer partitions.
Such an approach retains the benefits of loose coupling, i.e., ease of integra-
tion and maintenance, while surpassing file-based approaches in performance
through the use of fast network protocols and remote direct memory access
(RDMA) technologies. Crucially, it can be implemented so as not to disrupt
the normal execution of interfaced programs, thus preserving their perfor-
mance. However, the network-based approach requires a more sophisticated
design and management strategy to reduce latency and enhance throughput.
Despite these challenges, with proper implementation, the network-based
approach substantially improves the efficiency and scalability of multiscale
simulations by facilitating high-speed communication between diverse com-
putational models.

Toward Multiscale Biomolecular Simulations on Exascale Architec-
tures

For multiscale simulations to run efficiently on state-of-the-art supercom-
puters, first and foremost, it is imperative that the programs dedicated to a
specific methodology, such as QM and MM, are able to take advantage of the
strengths of both CPUs and GPUs. Moreover, these programs must be capa-
ble of using the vast parallel processing capabilities of exascale architectures.
Considerable efforts are underway to push QM- and MM-based programs
towards exascale [60–67] with support from EuroHPC JU through its HPC
Centres of Excellence [68] and the Exascale Computing Project (ECP) led
by the US Department of Energy [69].

For a multiscale simulation framework to fully exploit the capabilities of
these QM and MM programs, it must seamlessly integrate with their optimal
parallelization strategies without introducing inefficiencies. This entails en-
abling the concurrent execution of interfaced programs, eliminating the need
for their repeated startup and shutdown, and reducing communication over-
head to a minimum. Crucially, the calculation of subsystem interactions,
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such as those between QM and MM particles, needs to be highly parallel
and efficient to prevent it from becoming a computational bottleneck. Im-
plementing effective and automatic load balancing is also critical to ensure
that computational resources are utilized optimally, thereby maximizing the
throughput of individual simulations.

The versatile and high-performance MiMiC framework for multiscale sim-
ulations was designed with the aim of addressing the criteria outlined above [28].
The strategy used by the MiMiC framework is illustrated in Figure 1. On
one side, MiMiC connects to a simulation driver that manages the over-
all simulation process, including the integration of the equations of motion
and the maintenance of temperature and pressure. On the other side, it
interfaces multiple external programs using a client-server approach com-
bined with a multiple-program multiple-data (MPMD) model. Each ex-
ternal program is tasked with calculations belonging to a given subsys-
tem, while MiMiC calculates subsystem interactions. Importantly, the ex-
ternal programs run concurrently on separate computational resources us-
ing their own optimal parallelization capabilities. Communication between
MiMiC and the external programs is facilitated by the MiMiC Communi-
cation Library (MCL), a dedicated lightweight library that ensures efficient
network-based communication and simplifies the interfacing with external
programs. An illustration of a MiMiC-based simulation workflow is shown
in Figure 2. The scope of the MiMiC framework is broad, extending beyond
QM/MM. This includes QM/QM, which integrates different levels of QM
theory, QM/MM/CG, and even models that incorporate machine-learning
(ML) techniques like ML/MM or QM/ML.

The MiMiC framework has been used to implement a DFT-based elec-
trostatic embedding QM/MM method, employing the CPMD program [70]
as both the MD driver and QM engine, and GROMACS [61] as the MM en-
gine [28, 29]. In electrostatic embedding, the (external) electric field from the
point charges in the MM subsystem is included in the Hamiltonian of the QM
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Figure 1: Illustration of the strategy used by the MiMiC framework
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Figure 2: Illustration of MiMiC-based simulation workflow

subsystem, thus directly polarizing its electronic density. The calculation of
electrostatic QM/MM interactions is based on a dense grid representation
of the electronic density, which is computationally expensive, especially for
large systems, because the number of integrals over the electron density scales
linearly with the number of atoms in the MM subsystem. The MiMiC frame-
work has implemented an efficient approach that substantially speeds up
the calculation essentially without compromising the accuracy of the forces,
thus reducing the computational cost by about 80 % for small systems (e.g.,
small solvated proteins) and up to 99 % for larger systems (e.g., membrane-
embedded proteins) [28]. Furthermore, MiMiC implements a hybrid shared-
and distributed-memory (OpenMP/MPI) parallelization strategy to ensure
that these calculations remain efficient and do not hinder performance, even
under highly parallel conditions [29]. A powerful example of this is shown in
Figure 3, where the extreme scalability of the CPMD program is harnessed to
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Figure 3: Parallel scalability and efficiency of MiMiC-based QM/MM MD simu-
lations of IDH1. The IDH1 system has a total of 130,828 atoms with 142 QM atoms [13].
The simulations were run on the CPU partition of JUWELS [71]. The speedup is given
in terms of the time per MD step normalized against a reference run using seven nodes.
Adapted from Raghavan et al. [13], licensed under CC BY 4.0.

achieve strong scalability beyond 80,000 CPU cores with a parallel efficiency
of 70 % for a single MiMiC-based QM/MM MD simulation of the human
isocitrate dehydrogenase-1 (IDH1) [13]. Table 1 shows examples of the com-
putational performance and cost of MiMiC-based QM/MM MD simulations
using CPMD and GROMACS. It is clear that the simulation throughput de-
pends first and foremost on the chosen exchange-correlation functional and
the size of the QM subsystem. This reflects the fact that the QM calculation
is by far the most computationally demanding part of a QM/MM MD simula-
tion. Hybrid exchange-correlation functionals are particularly expensive in a
plane-wave basis set such as the one employed by the CPMD program. Still,
due to the excellent parallelism in CPMD, the simulation throughput can be
pushed to 4.8 ps/day for the small QM region (46 atoms) and 0.7 ps/day
for the larger QM subsystem (142 atoms). Using instead a non-hybrid func-
tional pushes the performance to 21 and 5.4 ps/day for the small and large
QM subsystems, respectively.

Biological Applications

The MiMiC framework has enabled a number of recent computational
studies that demonstrate its utility and efficiency across a broad spectrum of
systems with biological relevance. In this section, we showcase select exam-
ples that highlight the impactful contributions of MiMiC-based QM/MM MD
simulations in advancing our understanding of complex biological processes.

Among the pioneering uses of MiMiC-based QM/MM MD simulations
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Table 1: Computational performance and cost of MiMiC-based QM/MM MD
simulations. All simulations were run with a 0.5 fs timestep on the CPU partition of
JUWELS [71] at the scaling limit (parallel efficiency ≥ 70%). The systems are p38α
mitogen-activated protein kinase (169,550 atoms) and human isocitrate dehydrogenase-1
(130,828 atoms). We refer to the original work for full computational details [13].

System p38α IDH1
QM atoms 46 142
XC functional BLYP B3LYP BLYP B3LYP
Throughput (ps/day) 21 4.8 5.4 0.7
Cost (node-hours/ps) 9 1280 480 60480

were studies of CLC proteins, a large family of anion channels and trans-
porters. Chiariello et al. studied the molecular mechanism of fluoride inhibi-
tion of the anion/proton exchanger ClC-ec1 from E. coli (Fig. 4A) [72]. The
use of QM/MM for this study was mandatory as ion translocation involves
proton transfer processes. On the basis of QM/MM MD and well-tempered
metadynamics (wtMTD) simulations at the B3LYP and BLYP levels of the-
ory, Chiariello et al. were able to report proton affinities of the fluoride ion
and the gating glutamate residue E148, thus providing valuable insights into
transport inhibition. In a second study, the mechanisms of proton trans-
fer and release by the fluoride/proton antiporter CLCF-eca were investigated
(Fig. 4B) [73]. Employing the same simulation techniques, it could be shown
that a triad is formed between fluoride, glutamate E318, and the gating glu-
tamate E118, eventually releasing protons and fluoride as hydrogen fluoride.

In a recent study, the ligand iperoxo (routinely used in neuroimaging) tar-
geting the human muscarinic acetylcholine receptor 2 was investigated [75].
The work focuses on the calculation of the drug unbinding rate constant koff ,
a very difficult parameter to correctly estimate with force field-based ap-
proaches. In fact, while methods based on modern force fields are nowadays
able to predict accurate binding free energies and affinities, this is often not
the case for rate constants such as koff , which also require a correct estimation
of the free energy of transition states. The study shows how sensitive this es-
timation is to values of the partial charges of the ligand and that while results
obtained with a QM/MM MD simulation are in good agreement with exper-
imental findings, standard force field-based procedures lead to qualitatively
wrong results, most likely due to the lack of explicit electronic polarization
and charge transfer, which are included in QM/MM.
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Figure 4: Illustrations of biological systems that have been studied using the
MiMiC framework. A: ClC-ec1 anion/proton antiporter embedded in a solvated lipid
bilayer with a total of 150,925 atoms (19 QM atoms) [72]. Reprinted with permission
from Ref. [72]. Copyright 2020 American Chemical Society. B: CLCF-eca fluoride/proton
antiporter embedded in a solvated lipid bilayer with a total of around 174,000 atoms (36
QM atoms) [73]. Reprinted with permission from Ref. [73]. Copyright 2021 American
Chemical Society. C: AMPAR cation channel embedded in a solvated lipid bilayer where
the transmembrane domain was included in the simulations (22 QM atoms) [74]. Figure
by Schackert et al. [74], licensed under CC BY 4.0.

Another important application of QM/MM MD simulations is in scenarios
where parts of a system cannot be adequately described using simplified an-
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alytical force fields. Notable examples are metal ions, in particular transition
metals or divalent alkaline-earth ions. The absence of accurate parameters
for the latter hinders a thorough understanding of many biological processes
related to, e.g., ion channels, transporters, and pumps. Recently, Schackert
et al. studied the mechanism of calcium permeation in α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptors (AMPARs), which are key to
rapid synaptic transmission in the central nervous system (Fig. 4C) [74]. In
that study, the calcium-binding sites within the channel, initially identified
through classical MD, were further confirmed using QM/MM MD. This step
was crucial for validating a newly developed classical force field specifically
designed for calcium ions. Interestingly, they observed charge transfer be-
tween the calcium ion and the water molecules in the first solvation shell,
which underlines the importance of a QM/MM description for such systems.

Outlook

The exascale era is poised to radically change life sciences. With the abil-
ity to conduct longer and more accurate simulations on larger and more com-
plex molecular systems than ever before, we will be able to tackle scientific
questions that are currently beyond our reach, deepening our understand-
ing of biological processes. This opens up new opportunities for discovery
and innovation, potentially revolutionizing fields such as drug design and
bioengineering. However, fully realizing the potential of exascale comput-
ing is contingent upon overcoming substantial challenges in software design,
algorithm optimization, and the efficient utilization of modular and hetero-
geneous HPC architectures.

The versatility of the MiMiC framework makes it ideal for pushing mul-
tiscale biomolecular simulations towards the exascale. It is capable of ex-
ploiting the results of the large-scale initiatives by EuroHPC JU and ECP
for individual domains such as QM and MM. Indeed, work is already under-
way to couple a diverse set of QM programs to MiMiC, namely, Quantum
ESPRESSO, CP2K, and DFT-FE, all of which are being developed to exploit
state-of-the-art HPC technology [67]. Additionally, it is likely that MD sim-
ulations will benefit greatly from future ML-based force fields [76, 77], which
MiMiC is fully able to integrate into advanced simulation workflows [78].
For instance, hybrid ML/MM models facilitate long simulations of biologi-
cal systems using ML-based force fields, achieving near QM/MM precision
at a substantially reduced computational cost [79], while ML-enhanced free-
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energy methods significantly accelerate QM/MM calculations of ligand bind-
ing affinities for drug discovery [80]. These and other novel methods are
expected to aid in accurately predicting key biophysical properties like drug-
protein binding free energies and complete free-energy profiles. We antici-
pate that the integration of MiMiC-based multiscale simulations with ML
and enhanced sampling techniques will further catalyze a quantum leap in
the fundamental atomistic understanding of biological processes.
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[51] O. Weingart, A. Nenov, P. Altoè, I. Rivalta, J. Segarra-Mart́ı, I. Dokuk-
ina, M. Garavelli, COBRAMM 2.0 — A software interface for tailor-
ing molecular electronic structure calculations and running nanoscale
(QM/MM) simulations, J. Mol. Model. 24 (2018). doi:10.1007/s00894-
018-3769-6.
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ten, C. Chipot, E. Tajkhorshid, Scalable molecular dynamics on CPU
and GPU architectures with NAMD, J. Chem. Phys. 153 (2020).
doi:10.1063/5.0014475.
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